- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Hassan, Mohammad Mehedi (2)
-
Rahman, Akond (2)
-
Bhuiyan, Farzana Ahamed (1)
-
Shahriar, Hossain (1)
-
Wu, Fan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Infrastructure as code (IaC) scripts, such as Ansible scripts, are used to provision computing infrastructure at scale. Existence of bugs in IaC test scripts, such as, configuration and security bugs, can be consequential for the provisioned computing infrastructure. A characterization study of bugs in IaC test scripts is the first step to understand the quality concerns that arise during testing of IaC scripts, and also provide recommendations for practitioners on quality assurance. We conduct an empirical study with 4,831 Ansible test scripts mined from 104 open source software (OSS) repositories where we quantify bug frequency, and categorize bugs in test scripts. We further categorize testing patterns, i.e., recurring coding patterns in test scripts, which also correlate with appearance of bugs. From our empirical study, we observe 1.8% of 4,831 Ansible test scripts to include a bug, and 45.2% of the 104 repositories to contain at least one test script that includes bugs. We identify 7 categories of bugs, which includes security bugs and performance bugs that are related with metadata extraction. We also identify 3 testing patterns that correlate with appearance of bugs: 'assertion roulette’, 'local only testing’, and 'remote mystery guest‘. Based on our findings, we advocate for detection and mitigation of the 3 testing patterns as these patterns can have negative implications for troubleshooting failures, reproducible deployments of software, and provisioning of computing infrastructure.more » « less
-
Rahman, Akond; Bhuiyan, Farzana Ahamed; Hassan, Mohammad Mehedi; Shahriar, Hossain; Wu, Fan (, 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC), 2022)Machine learning (ML) operations or MLOps advocates for integration of DevOps- related practices into the ML development and deployment process. Adoption of MLOps can be hampered due to a lack of knowledge related to how development tasks can be automated. A characterization of bot usage in ML projects can help practitioners on the types of tasks that can be automated with bots, and apply that knowledge into their ML development and deployment process. To that end, we conduct a preliminary empirical study with 135 issues reported mined from 3 libraries related to deep learning: Keras, PyTorch, and Tensorflow. From our empirical study we observe 9 categories of tasks that are automated with bots. We conclude our work-in-progress paper by providing a list of lessons that we learned from our empirical study.more » « less
An official website of the United States government
